• Biomedical scientist with over 15 years of multi-disciplinary research experience on cell biology, extracellular matrix mineralization, tissue spectroscopy, tissue engineering and biomaterials, with the ultimate goal of translating new insights into strategies to restore skeletal health
• Principal investigator in recent funding awards from the NIH/NIAMS and PA Department of Health
• Strong commitment to scholarly achievement and record of 29 peer-reviewed papers (h-index 15)
• Earned two PhD degrees—in Biological Sciences (Biophysics) and in Cell Biology
• Long-term expertise mentoring a diverse group of students and supervising projects
• Over three years of teaching experience as sole instructor, actively fostering equity and inclusion

Google Scholar: Google Scholar

Labs: Lab website

Research Interests

  • • Biology and chemistry of mineralized tissues (bones, teeth, pathological calcifications)
    • Dynamic of bone mineralization during development, aging, disease, and therapeutic interventions
    • Contribution of tissue-level mineral and matrix properties to bone quality and strength
    • Optimization of calcium phosphate-based biomaterials for bone repair and tissue engineering
    • Infrared spectroscopy and imaging for characterization of tissues and materials

Courses Taught




BIOE 0844

The Bionic Human


BIOE 0944

Honors Bionic Human


Selected Publications


  • Shanas, N., Querido, W., Oswald, J., Jepsen, K., Carter, E., Raggio, C., & Pleshko, N. (2022). Infrared Spectroscopy-Determined Bone Compositional Changes Associated with Anti-Resorptive Treatment of the oim/oim Mouse Model of Osteogenesis Imperfecta. Appl Spectrosc, 76(4), pp. 416-427. United States. doi: 10.1177/00037028211055477

  • Falcon, J.M., Chirman, D., Veneziale, A., Morman, J., Bolten, K., Kandel, S., Querido, W., Freeman, T., & Pleshko, N. (2021). DMOG Negatively Impacts Tissue Engineered Cartilage Development. Cartilage, 13(2_suppl), pp. 722S-733S. United States. doi: 10.1177/1947603520967060

  • Ailavajhala, R., Querido, W., Rajapakse, C.S., & Pleshko, N. (2020). Near infrared spectroscopic assessment of loosely and tightly bound cortical bone water. Analyst, 145(10), pp. 3713-3724. England. doi: 10.1039/c9an02491c

  • Karchner, J.P., Querido, W., Kandel, S., & Pleshko, N. (2019). Spatial correlation of native and engineered cartilage components at micron resolution. Ann N Y Acad Sci, 1442(1), pp. 104-117. United States. doi: 10.1111/nyas.13934

  • Wischmann, J., Lenze, F., Thiel, A., Bookbinder, S., Querido, W., Schmidt, O., Burgkart, R., Eisenhart-Rothe, R.v., Richter, G.H.S., Pleshko, N., & Mayer-Kuckuk, P. (2018). Matrix mineralization controls gene expression in osteoblastic cells. Exp Cell Res, 372(1), pp. 25-34. United States. doi: 10.1016/j.yexcr.2018.09.005

  • Querido, W., Ailavajhala, R., Padalkar, M., & Pleshko, N. (2018). Validated Approaches for Quantification of Bone Mineral Crystallinity Using Transmission Fourier Transform Infrared (FT-IR), Attenuated Total Reflection (ATR) FT-IR, and Raman Spectroscopy. Appl Spectrosc, 72(11), pp. 1581-1593. United States. doi: 10.1177/0003702818789165

  • Jongwattanapisan, P., Terajima, M., Miguez, P.A., Querido, W., Nagaoka, H., Sumida, N., Gurysh, E.G., Ainslie, K.M., Pleshko, N., Perera, L., & Yamauchi, M. (2018). Identification of the effector domain of biglycan that facilitates BMP-2 osteogenic function. Sci Rep, 8(1), p. 7022. England. doi: 10.1038/s41598-018-25279-x

  • Querido, W., Falcon, J.M., Kandel, S., & Pleshko, N. (2017). Vibrational spectroscopy and imaging: applications for tissue engineering. Analyst, 142(21), pp. 4005-4017. England. doi: 10.1039/c7an01055a

  • Querido, W., Rossi, A.L., & Farina, M. (2016). The effects of strontium on bone mineral: A review on current knowledge and microanalytical approaches. Micron, 80, pp. 122-134. England. doi: 10.1016/j.micron.2015.10.006

  • Oliveira-Nunes, M.C., Kahn, S.A., Barbeitas, A.L.d.e.O., Spohr, T.C.L.d.e.S.E., Dubois, L.G.F., Matioszek, G.M.V., Querido, W., Campanati, L., Neto, J.M.d.e.B., Lima, F.R.S., Moura-Neto, V., & Carneiro, K. (2016). The availability of the embryonic TGF-β protein Nodal is dynamically regulated during glioblastoma multiforme tumorigenesis. Cancer Cell Int, 16, p. 46. England. doi: 10.1186/s12935-016-0324-3

  • Querido, W., Farina, M., & Anselme, K. (2015). Strontium ranelate improves the interaction of osteoblastic cells with titanium substrates: Increase in cell proliferation, differentiation and matrix mineralization. Biomatter, 5(1), p. e1027847. United States. doi: 10.1080/21592535.2015.1027847

  • Querido, W., Campos, A.P.C., Ferreira, E.H.M., Gil, R.A.S.S., Rossi, A.M., & Farina, M. (2014). Strontium ranelate changes the composition and crystal structure of the biological bone-like apatite produced in osteoblast cell cultures. Cell Tissue Res, 357(3), pp. 793-801. Germany. doi: 10.1007/s00441-014-1901-1

  • Rossi, A.L., Moldovan, S., Querido, W., Rossi, A., Werckmann, J., Ersen, O., & Farina, M. (2014). Effect of strontium ranelate on bone mineral: Analysis of nanoscale compositional changes. Micron, 56, pp. 29-36. England. doi: 10.1016/j.micron.2013.09.008

  • Querido, W. & Farina, M. (2013). Strontium ranelate increases the formation of bone-like mineralized nodules in osteoblast cell cultures and leads to Sr incorporation into the intact nodules. Cell Tissue Res, 354(2), pp. 573-580. Germany. doi: 10.1007/s00441-013-1669-8

  • Oliveira, J.P., Querido, W., Caldas, R.J., Campos, A.P.C., Abraçado, L.G., & Farina, M. (2012). Strontium is incorporated in different levels into bones and teeth of rats treated with strontium ranelate. Calcif Tissue Int, 91(3), pp. 186-195. United States. doi: 10.1007/s00223-012-9625-2

  • Querido, W., Farina, M., & Balduino, A. (2012). Giemsa as a fluorescent dye for mineralizing bone-like nodules in vitro. Biomed Mater, 7(1), p. 011001. England. doi: 10.1088/1748-6041/7/1/011001

  • Rossi, A.L., Barreto, I.C., Maciel, W.Q., Rosa, F.P., Rocha-Leão, M.H., Werckmann, J., Rossi, A.M., Borojevic, R., & Farina, M. (2012). Ultrastructure of regenerated bone mineral surrounding hydroxyapatite-alginate composite and sintered hydroxyapatite. Bone, 50(1), pp. 301-310. United States. doi: 10.1016/j.bone.2011.10.022

  • Querido, W., Abraçado, L.G., Rossi, A.L., Campos, A., Rossi, A.M., Gil, R.S., Borojevic, R., Balduino, A., & Farina, M. (2011). Ultrastructural and mineral phase characterization of the bone-like matrix assembled in F-OST osteoblast cultures. Calcif Tissue Int, 89(5), pp. 358-371. United States. doi: 10.1007/s00223-011-9526-9

  • Mello, A., Hong, Z., Rossi, A.M., Luan, L., Farina, M., Querido, W., Eon, J., Terra, J., Balasundaram, G., Webster, T., Feinerman, A., Ellis, D.E., Ketterson, J.B., & Ferreira, C.L. (2007). Osteoblast proliferation on hydroxyapatite thin coatings produced by right angle magnetron sputtering. Biomed Mater, 2(2), pp. 67-77. England. doi: 10.1088/1748-6041/2/2/003