Biography

Dr. Ling Liu is an Associate Professor in the Department of Mechanical Engineering at Temple University from Fall 2019. Prior to joining Temple, he was an Assistant Professor (2012-2018) and Associate Professor (2018-2019) in the Department of Mechanical and Aerospace Engineering at Utah State University. He received PhD in Mechanics and Materials from Columbia University in 2010, and BS and MS in Engineering Mechanics from Dalian University of Technology, China.

Dr. Liu's current research focuses on the multiscale modeling and simulation of advanced materials for improved physical understanding and accelerated design. Examples include nanostructured materials for applications in energy storage and phase separation, novel nano/bio-materials with extraordinary mechanical and thermal properties, and advanced engineering composites for prolonged services in extreme environments. His research has been sponsored by NSF, DOE/NE, DOD and industry, leading to over 50 peer-refereed journal publications.

Dr. Liu received the NSF CAREER award in 2018. He was the chair of two Technical Committees of ASME including the Multifunctional Materials Technical Committee, and the Nanomaterials for Biology and Medicine Technical Committee.

Research Interests

  • Multi-scale computation for fundamental understanding and accelerated design of energy storage, healthcare, nuclear, and composite materials with extraordinary mechanical thermal, and electrochemical properties.

Courses Taught

Number

Name

Level

ENGR 2333

Mechanics of Solids

Undergraduate

ENGR 3201

Material Science for Engineers

Undergraduate

MEE 0843

Technology Transformations

Undergraduate

MEE 4572

Heat and Mass Transfer

Undergraduate

Selected Publications

  • He, J., Zhang, L., & Liu, L. (2021). The hydrogen-bond configuration modulates the energy transfer efficiency in helical protein nanotubes. Nanoscale, 13(2), pp. 991-999. England. doi: 10.1039/d0nr06031c

  • Hyde, A., He, J., Cui, X., Lua, J., & Liu, L. (2020). Effects of microvoids on strength of unidirectional fiber-reinforced composite materials. Composites Part B Engineering, 187, p. 107844. doi: 10.1016/j.compositesb.2020.107844

  • Zhang, L. & Liu, L. (2019). Hierarchically hydrogen-bonded graphene/polymer interfaces with drastically enhanced interfacial thermal conductance. Nanoscale, 11(8), pp. 3656-3664. England. doi: 10.1039/c8nr08760a

  • He, J., Zhang, L., & Liu, L. (2019). Thermal transport in monocrystalline and polycrystalline lithium cobalt oxide. Physical Chemistry Chemical Physics, 21(23), pp. 12192-12200. Royal Society of Chemistry (RSC). doi: 10.1039/c9cp01585j

  • Ikeshima, D., Yonezu, A., & Liu, L. (2018). Molecular origins of elastoplastic behavior of polycarbonate under tension: A coarse-grained molecular dynamics approach. Computational Materials Science, 145, pp. 306-319. doi: 10.1016/j.commatsci.2018.01.001

  • Li, N., Wei, W., Xie, K., Tan, J., Zhang, L., Luo, X., Yuan, K., Song, Q., Li, H., Shen, C., Ryan, E.M., Liu, L., & Wei, B. (2018). Suppressing Dendritic Lithium Formation Using Porous Media in Lithium Metal-Based Batteries. Nano Lett, 18(3), pp. 2067-2073. United States. doi: 10.1021/acs.nanolett.8b00183

  • Zhang, L. & Liu, L. (2017). Polymeric Self-Assembled Monolayers Anomalously Improve Thermal Transport across Graphene/Polymer Interfaces. ACS Appl Mater Interfaces, 9(34), pp. 28949-28958. United States. doi: 10.1021/acsami.7b09605

  • Sun, Z., Chen, X., Xi, G., Liu, L., & Chen, X. (2017). Mass transfer mechanisms of rotary atomization: A numerical study using the moving particle semi-implicit method. International Journal of Heat and Mass Transfer, 105, pp. 90-101. doi: 10.1016/j.ijheatmasstransfer.2016.09.053

  • Zhu, L., Wu, J., Liu, L., Liu, Y., Yan, Y., Cui, Q., & Chen, X.i. (2016). Gating mechanism of mechanosensitive channel of large conductance: a coupled continuum mechanical-continuum solvation approach. Biomech Model Mechanobiol, 15(6), pp. 1557-1576. Germany. doi: 10.1007/s10237-016-0783-4

  • Bai, Z., Zhang, L., Li, H., & Liu, L. (2016). Nanopore Creation in Graphene by Ion Beam Irradiation: Geometry, Quality, and Efficiency. ACS Appl Mater Interfaces, 8(37), pp. 24803-24809. United States. doi: 10.1021/acsami.6b06220

  • Sadeghzadeh, S. & Liu, L. (2016). Resistance and rupture analysis of single- and few-layer graphene nanosheets impacted by various projectiles. Superlattices and Microstructures, 97, pp. 617-629. doi: 10.1016/j.spmi.2016.07.005

  • Zhang, L., Bai, Z., & Liu, L. (2016). Exceptional Thermal Conductance across Hydrogen-Bonded Graphene/Polymer Interfaces. Advanced Materials Interfaces, 3(13). doi: 10.1002/admi.201600211

  • Zhang, L., Bai, Z., & Liu, L. (2016). Thermal Conductance: Exceptional Thermal Conductance across Hydrogen-Bonded Graphene/Polymer Interfaces (Adv. Mater. Interfaces 13/2016). Advanced Materials Interfaces, 3(13). doi: 10.1002/admi.201670060

  • Bai, Z., Zhang, L., & Liu, L. (2016). Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles. Nanoscale, 8(16), pp. 8761-8772. England. doi: 10.1039/c6nr00983b

  • Liu, L. & Zhang, L. (2016). Nanofluidics in graphene-based material systems. In Graphene Science Handbook: Mechanical and Chemical Properties (pp. 465-476).

  • Chen, X., Sun, Z.G., Liu, L., & Xi, G. (2016). Improved MPS method with variable-size particles. International Journal for Numerical Methods in Fluids, 80(6), pp. 358-374. doi: 10.1002/fld.4082

  • Bai, Z., Zhang, L., & Liu, L. (2015). Bombarding Graphene with Oxygen Ions: Combining Effects of Incident Angle and Ion Energy to Control Defect Generation. Journal of Physical Chemistry C, 119(47), pp. 26793-26802. doi: 10.1021/acs.jpcc.5b09620

  • Zhang, L., Bai, Z., Ban, H., & Liu, L. (2015). Effects of the amino acid sequence on thermal conduction through β-sheet crystals of natural silk protein. Phys Chem Chem Phys, 17(43), pp. 29007-29013. England. doi: 10.1039/c5cp04621a

  • Zhang, L., Ruesch, M., Zhang, X., Bai, Z., & Liu, L. (2015). Tuning thermal conductivity of crystalline polymer nanofibers by interchain hydrogen bonding. RSC Advances, 5(107), pp. 87981-87986. doi: 10.1039/c5ra18519j

  • Li, T., Liu, L., Hu, D., Oloyede, A., Xiao, Y., Yarlagadda, P., & Gu, Y.T. (2015). Comprehensive Contribution of Filament Thickness and Crosslinker Failure to the Rheological Property of F-actin Cytoskeleton. Cellular and Molecular Bioengineering, 8(2), pp. 278-284. doi: 10.1007/s12195-015-0382-y

  • Liang, Y., Sun, Z., Xi, G., & Liu, L. (2015). Numerical models for heat conduction and natural convection with symmetry boundary condition based on particle method. International Journal of Heat and Mass Transfer, 88, pp. 433-444. doi: 10.1016/j.ijheatmasstransfer.2015.04.105

  • Li, D., Sun, Z., Chen, X., Xi, G., & Liu, L. (2015). Analysis of wall boundary in moving particle semi-implicit method and a novel model of fluid–wall interaction. International Journal of Computational Fluid Dynamics, 29(3-5), pp. 199-214. doi: 10.1080/10618562.2015.1028924

  • Xu, D., Jiang, L., Singh, A., Dustin, D., Yang, M., Liu, L., Lund, R., Sellati, T.J., & Dong, H.e. (2015). Designed supramolecular filamentous peptides: balance of nanostructure, cytotoxicity and antimicrobial activity. Chem Commun (Camb), 51(7), pp. 1289-1292. England. doi: 10.1039/c4cc08808e

  • Xie, B., Liu, L., & Zhang, L. (2015). Stress propagation in a hierarchical energy dissipating composite based on NPSL. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 14-2015. doi: 10.1115/IMECE2015-52895

  • Chen, X., Xu, B., & Liu, L. (2014). Nanoscale fluid mechanics and energy conversion. Applied Mechanics Reviews, 66(5). doi: 10.1115/1.4026913

  • Zhang, L., Chen, T., Ban, H., & Liu, L. (2014). Hydrogen bonding-assisted thermal conduction in β-sheet crystals of spider silk protein. Nanoscale, 6(14), pp. 7786-7791. England. doi: 10.1039/c4nr01195c

  • Yang, M., Xu, D., Jiang, L., Zhang, L., Dustin, D., Lund, R., Liu, L., & Dong, H.e. (2014). Filamentous supramolecular peptide-drug conjugates as highly efficient drug delivery vehicles. Chem Commun (Camb), 50(37), pp. 4827-4830. England. doi: 10.1039/c4cc01568a

  • Chen, X., Xu, B., & Liu, L. (2014). Closure to "discussion of 'nanoscale fluid mechanics and energy conversion'" (Chen, X., Xu, B., and Liu, L., 2014, ASME appl. mech. rev., 66(5), p. 050803). Applied Mechanics Reviews, 66(5). doi: 10.1115/1.4027649

  • Chen, X., Xu, B., & Liu, L. (2014). Nanoscale fluid mechanics and energy conversion. Applied Mechanics Reviews, 66(5). doi: 10.1115/1.4026913]

  • Liu, L. & Chen, X.i. (2013). Fast ion transport and phase separation in a mechanically driven flow of electrolytes through tortuous sub-nanometer nanochannels. Chemphyschem, 14(11), pp. 2413-2418. Germany. doi: 10.1002/cphc.201300201

  • Liu, L., Lim, H., Lu, W., Qiao, Y., & Chen, X. (2013). Mechanical-to-electric energy conversion by mechanically driven flow of electrolytes confined in nanochannels. Applied Physics Express, 6(1). doi: 10.7567/APEX.6.015202

  • Xu, B., Liu, L., Lim, H., Qiao, Y., & Chen, X. (2012). Harvesting energy from low-grade heat based on nanofluids. Nano Energy, 1(6), pp. 805-811. doi: 10.1016/j.nanoen.2012.07.013

  • Liu, L., Zhang, L., Sun, Z., & Xi, G. (2012). Graphene nanoribbon-guided fluid channel: a fast transporter of nanofluids. Nanoscale, 4(20), pp. 6279-6283. England. doi: 10.1039/c2nr31847d

  • Liu, L., Zhang, L., & Lua, J. (2012). Branched carbon nanotube reinforcements for improved strength of polyethylene nanocomposites. Applied Physics Letters, 101(16). doi: 10.1063/1.4761936

  • Xu, B., Liu, L., Zhou, Q., Yu, Q., Xu, J., Li, Y., Tak, M., Park, T., & Xi, C. (2011). Energy dissipation of nanoporous MFI zeolite under dynamic crushing. Journal of Computational and Theoretical Nanoscience, 8(5), pp. 881-886. doi: 10.1166/jctn.2011.1768

  • Liu, L., Chen, X., Kim, T., Han, A., & Qiao, Y. (2010). Effects of anion size and concentration on electrolyte invasion into molecular-sized nanopores. New Journal of Physics, 12. doi: 10.1088/1367-2630/12/3/033021

  • Liu, L. & Chen, X. (2010). Effect of surface roughness on thermal conductivity of silicon nanowires. Journal of Applied Physics, 107(3). doi: 10.1063/1.3298457

  • Zhao, J., Liu, L., Culligan, P.J., & Chen, X.i. (2009). Thermal effect on the dynamic infiltration of water into single-walled carbon nanotubes. Phys Rev E Stat Nonlin Soft Matter Phys, 80(6 Pt 1), p. 061206. United States. doi: 10.1103/PhysRevE.80.061206

  • Liu, L., Zhao, J., Culligan, P.J., Qiao, Y.u., & Chen, X.i. (2009). Thermally responsive fluid behaviors in hydrophobic nanopores. Langmuir, 25(19), pp. 11862-11868. United States. doi: 10.1021/la901516j

  • Liu, L., Zhao, J., Yin, C., Culligan, P.J., & Chen, X.i. (2009). Mechanisms of water infiltration into conical hydrophobic nanopores. Phys Chem Chem Phys, 11(30), pp. 6520-6524. England. doi: 10.1039/b905641f

  • Liu, L., Chen, X.i., Lu, W., Han, A., & Qiao, Y.u. (2009). Infiltration of electrolytes in molecular-sized nanopores. Phys Rev Lett, 102(18), p. 184501. United States. doi: 10.1103/PhysRevLett.102.184501

  • Liu, L. & Chen, X.i. (2009). Nanofluidic transport in branching nanochannels: a molecular sieve based on Y-junction nanotubes. J Phys Chem B, 113(18), pp. 6468-6472. United States. doi: 10.1021/jp900721h

  • Liu, L., Ogasawara, N., Chiba, N., & Chen, X. (2009). Can indentation technique measure unique elastoplastic properties? Journal of Materials Research, 24(3), pp. 784-800. doi: 10.1557/jmr.2009.0100

  • Qiao, Y.u., Liu, L., & Chen, X.i. (2009). Pressurized liquid in nanopores: a modified Laplace-Young equation. Nano Lett, 9(3), pp. 984-988. United States. doi: 10.1021/nl8030136

  • Liu, L. & Chen, X. (2008). Controlled crack arrest in brittle thin films: The effect of embedded voids. Acta Materialia, 56(20), pp. 6214-6223. doi: 10.1016/j.actamat.2008.08.038

  • Yonezu, A., Liu, L., & Chen, X. (2008). Analysis on spiral crack in thick diamond-like carbon film subjected to spherical contact loading. Materials Science and Engineering A, 496(1-2), pp. 67-76. doi: 10.1016/j.msea.2008.04.069

  • Chen, X.i., Cao, G., Han, A., Punyamurtula, V.K., Liu, L., Culligan, P.J., Kim, T., & Qiao, Y.u. (2008). Nanoscale fluid transport: size and rate effects. Nano Lett, 8(9), pp. 2988-2992. United States. doi: 10.1021/nl802046b

  • Liu, L., Yan, J., & Cheng, G. (2008). Optimum structure with homogeneous optimum truss-like material. Computers and Structures, 86(13-14), pp. 1417-1425. doi: 10.1016/j.compstruc.2007.04.030

  • Chen, X., Tang, Y., Liu, L., Zhao, M., Punyamurtula, V.K., Chen, J., Han, A., & Qiao, Y. (2008). High-frequency vibration of a conformal antenna structure. PROCEEDINGS of the INSTITUTION of MECHANICAL ENGINEERS PART G-JOURNAL of AEROSPACE ENGINEERING, 222(G4), pp. 569-574. doi: 10.1243/09544100JAERO268

  • Liu, L., Zhao, M., Zhou, Q., & Chen, X. (2008). Measuring elastic property of single-walled carbon nanotubes by nanoindentation: A theoretical framework. Mechanics Research Communications, 35(4), pp. 256-267. doi: 10.1016/j.mechrescom.2008.01.008

  • Chen, X., Liu, L., & Cao, G. (2008). Mechanisms of nanoindentation on multiwalled carbon nanotube and nanotube cluster. Journal of Nanomaterials, 2008(1). doi: 10.1155/2008/271763

  • Liu, L., Qiao, Y., & Chen, X. (2008). Pressure-driven water infiltration into carbon nanotube: The effect of applied charges. Applied Physics Letters, 92(10). doi: 10.1063/1.2857474

  • Yan, J., Cheng, G., Liu, L., & Liu, S. (2008). Concurrent material and structural optimization of hollow plate with truss-like material. Structural and Multidisciplinary Optimization, 35(2), pp. 153-163. doi: 10.1007/s00158-007-0124-4

  • Liu, L., Yan, J., & Cheng, G. (2007). Representative volume element simulation based on energy equivalence of inner cells. Guti Lixue Xuebao/Acta Mechanica Solida Sinica, 28(3), pp. 275-280.

  • Liu, L. & Yang, H. (2007). A paralleled element-free Galerkin analysis for structures with cyclic symmetry. Engineering with Computers, 23(2), pp. 137-144. doi: 10.1007/s00366-006-0050-x

  • Liu, L., Yan, J., & Cheng, G. (2007). Elasto-plastic analysis for 2D structures with truss-like materials. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 39(1), pp. 54-62.

  • Yan, J., Cheng, G., Liu, L., & Liu, S. (2006). Stress optimization for truss-like materials based on micropolar continuum representation. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 38(3), pp. 356-363.

  • Yan, J., Cheng, G., Liu, S., & Liu, L. (2006). Comparison of prediction on effective elastic property and shape optimization of truss material with periodic microstructure. International Journal of Mechanical Sciences, 48(4), pp. 400-413. doi: 10.1016/j.ijmecsci.2005.11.003

  • Han, Z., Yang, H., & Liu, L. (2006). Solving viscoelastic problems with cyclic symmetry via a precise algorithm and EFGM. Acta Mechanica Sinica/Lixue Xuebao, 22(2), pp. 170-176. doi: 10.1007/s10409-005-0093-z

  • Yang, H. & Liu, L. (2005). The use of cyclic symmetry in EFG analysis for heat transfer problems. International Journal for Numerical Methods in Engineering, 62(7), pp. 937-951. doi: 10.1002/nme.1219

  • Yang, H., Liu, L., & Han, Z. (2005). The use of cyclic symmetry in two-dimensional elastic analysis by the element-free Galerkin method. Communications in Numerical Methods in Engineering, 21(2), pp. 83-95. doi: 10.1002/cnm.730

  • Haitian, Y. & Ling, L. (2004). Solving transient heat conduction problems with cyclic symmetry via a paralleled EFGM and a precise algorithm. Numerical Heat Transfer, Part B: Fundamentals, 46(5), pp. 479-495. doi: 10.1080/10407790490504811